skip to main content


Search for: All records

Creators/Authors contains: "Gaherty, James B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Pacific ocean-bottom seismometer (OBS) Research into Convecting Asthenosphere (ORCA) experiment deployed two 30-station seismic arrays between 2018 and 2020—a US contribution to the international PacificArray project. The “Young ORCA” array deployed on ∼40 Ma central Pacific seafloor had a ∼68% data recovery rate, whereas the “Old ORCA” array deployed on ∼120 Ma southwest Pacific seafloor had a ∼80% recovery rate. We detail here the seismic data quality, spectral characteristics, and engineering challenges of this experiment. We provide information to assist users of this dataset, including OBS orientations and tables of daily data quality for all channels. Preliminary analysis illustrates the utility of these data for surface- and body-wave seismic imaging. 
    more » « less
  2. Abstract

    Small‐scale convection beneath the oceanic plates has been invoked to explain off‐axis nonplume volcanism, departure from simple seafloor depth‐age relationships, and intraplate gravity lineations. We deployed 30 broadband ocean bottom seismometer stations on ∼40 Ma Pacific seafloor in a region notable for gravity anomalies, measured by satellite altimetry, elongated parallel to plate motion.P‐wave teleseismic tomography reveals alternating upper mantle velocity anomalies on the order of ±2%, aligned with the gravity lineations. These features, which correspond to ∼300°–500°K lateral temperature contrast, and possible hydrous or carbonatitic partial melt, are—surprisingly—strongest between 150 and 260 km depth, indicating rapid vertical motions through a low‐viscosity asthenospheric channel. Coherence and admittance analysis of gravity and topography using new multibeam bathymetry soundings substantiates the presence of mantle density variations, and forward modeling predicts gravity anomalies that qualitatively match observed lineations. This study provides observational support for small‐scale convective rolls beneath the oceanic plates.

     
    more » « less
  3. Abstract The Alaska Amphibious Community Seismic Experiment (AACSE) is a shoreline-crossing passive- and active-source seismic experiment that took place from May 2018 through August 2019 along an ∼700  km long section of the Aleutian subduction zone spanning Kodiak Island and the Alaska Peninsula. The experiment featured 105 broadband seismometers; 30 were deployed onshore, and 75 were deployed offshore in Ocean Bottom Seismometer (OBS) packages. Additional strong-motion instruments were also deployed at six onshore seismic sites. Offshore OBS stretched from the outer rise across the trench to the shelf. OBSs in shallow water (<262  m depth) were deployed with a trawl-resistant shield, and deeper OBSs were unshielded. Additionally, a number of OBS-mounted strong-motion instruments, differential and absolute pressure gauges, hydrophones, and temperature and salinity sensors were deployed. OBSs were deployed on two cruises of the R/V Sikuliaq in May and July 2018 and retrieved on two cruises aboard the R/V Sikuliaq and R/V Langseth in August–September 2019. A complementary 398-instrument nodal seismometer array was deployed on Kodiak Island for four weeks in May–June 2019, and an active-source seismic survey on the R/V Langseth was arranged in June 2019 to shoot into the AACSE broadband network and the nodes. Additional underway data from cruises include seafloor bathymetry and sub-bottom profiles, with extra data collected near the rupture zone of the 2018 Mw 7.9 offshore-Kodiak earthquake. The AACSE network was deployed simultaneously with the EarthScope Transportable Array (TA) in Alaska, effectively densifying and extending the TA offshore in the region of the Alaska Peninsula. AACSE is a community experiment, and all data were made available publicly as soon as feasible in appropriate repositories. 
    more » « less
  4. Abstract

    Lithospheric seismic anisotropy illuminates mid‐ocean ridge dynamics and the thermal evolution of oceanic plates. We utilize short‐period (5–7.5 s) ambient‐noise surface waves and 15‐ to 150‐s Rayleigh waves measured across the NoMelt ocean‐bottom array to invert for the complete radial and azimuthal anisotropy in the upper ∼35 km of ∼70‐Ma Pacific lithospheric mantle, and azimuthal anisotropy through the underlying asthenosphere. Strong azimuthal variations in Rayleigh‐ and Love‐wave velocity are observed, including the first clearly measured Love‐wave 2θand 4θvariations. Inversion of averaged dispersion requires radial anisotropy in the shallow mantle (2‐3%) and the lower crust (4‐5%), with horizontal velocities (VSH) faster than vertical velocities (VSV). Azimuthal anisotropy is strong in the mantle, with 4.5–6% 2θvariation inVSVwith fast propagation parallel to the fossil‐spreading direction (FSD), and 2–2.5% 4θvariation inVSHwith a fast direction 45° from FSD. The relative behavior of 2θ, 4θ, and radial anisotropy in the mantle are consistent with ophiolite petrofabrics, linking outcrop and surface‐wave length scales.VSVremains fast parallel to FSD to ∼80 km depth where the direction changes, suggesting spreading‐dominated deformation at the ridge. The transition at ∼80 km perhaps marks the dehydration boundary and base of the lithosphere. Azimuthal anisotropy strength increases from the Moho to ∼30 km depth, consistent with flow models of passive upwelling at the ridge. Strong azimuthal anisotropy suggests extremely coherent olivine fabric. Weaker radial anisotropy implies slightly nonhorizontal fabric or the presence of alternative (so‐called E‐type) peridotite fabric. Presence of radial anisotropy in the crust suggests subhorizontal layering and/or shearing during crustal accretion.

     
    more » « less